What is the scenario when we get a s-ordinary B on the right, and weakly positive + negative reflexive case appears both on the left?

i.e., What happen if we get into?
A =  mu a. Top -> mu b. (Int -> b) 
   & mu a. Int -> mu b. (a -> Int) --- the Int cannot be Top

<:
     mu a. Int -> mu b. (Int -> b) 
   & mu a. Int -> mu b. (a -> Int)



B = mu a. Int -> (mu b. (Int -> b) & (a -> Int))



Meanwhile, this also holds:
A =  mu a. Top -> mu b. (Int -> b) & (b -> (Int -> Int ))
   & mu a. Int -> mu b. (b -> Int) 
	   --- note that neg b + pos b is strict subtyping
	   --- note that here Int can be changed to Top
	   
<:
	mu a. Int -> (mu b. (Int -> b)) -- wp, RHS
  & mu a. Int -> (mu b. (b -> Int)) -- neg, LHS

B = mu a. Int -> (mu b. (Int -> b) &  (b -> (Int -> Int) ) & (b -> Int))




i.e., What happen if we get into?

This is a failing subtyping <<---- TODO; check why


A =  mu a. Top -> mu b. (Int -> b) 
   & mu a. Int -> ((mu b. a -> Int) & (mu b. b -> Int))

<:
     mu a. Int -> mu b. (Int -> b) 
   & mu a. Int -> ((mu b. a -> Int) & (mu b. b -> Int))
   & mu a. Int -> (mu b. b -> Int)



B = mu a. Int -> (mu b. (Int -> b) & (a -> Int) & (b -> Int))


Inductively find the middle type

Inductively find the middle type