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Distributive Iso-Recursive Subtyping

ANONYMOUS AUTHORC(S)

1 Introduction
2 Overview

2.1 Syntax

Source Types A, B
Target Types A,B

nat | T | Ay = Ay | a | A1&A, | pa. A | A®
nat | T|A; — Ay | a | Aj&A,y | {(a,]). A | {a. A}

We will abuse the meta-variable A, B, C, D, ... to denote both source and target types. We will
indicate in the rule whether the type in question is a source type or a target type.
Note, though written as named representation, we allow the use of alpha renaming at will in all
the rules. Specifically, if we take a locally nameless view, then for following type constructs:
e In source type, variables are bound to recursive types. In pa.A, the variable « is bound to
the type A.
o Intarget type, variables are bound to both recursive shell types and labeled types. In {(«, [).A
and {a.A}!, the variable « is bound to the type A.
For example, in the type {(a,1).a — {a.(nat — )}/, the first & is bound to the recursive
shell type and the « in (nat — «) is bound to the labeled type.
o In target type, labels can also be renamed up to a-equivalence w.r.t. the recursive shell type,
ie., in {(a,1).A, the label ] is bound to the type A.

2.2 Translation

A~ B (Source type A translates to target type B)
TRANS-AND TRANS-ARR
TRANS-TOP TRANS-NAT TRANS-VAR A, ~ A B/ ~> B AI ~ A B/ ~> B
T T nat ~» nat a~a A'&B ~» A&B A —>B ~~»A—>B
TRANS-MU TRANS-LABEL
A A A s A
pa. A~ {(a]). (Ala™ - {a. AY]) A" s { A

Fig. 1. Translation rules.

In rule TRANS-MU, we perform a bottom-up translation, which means the body is first translated
to a target type A, and then the translation result is a polarized substitution of the variable « in the
type A.

The substitution type, {ar.A}!, is a labeled type, and « is bound in the type A, so if ya.A’ is closed,
then {a.A}! is also closed.

The substitution result is a shell type, the { (looking like a shell) is used to indicate the range of
the original recursive type in the translation. The variable « is bound to the type A[a™ + {a.A}'].
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2 Anon.

More precisely, only the free variable « in the first A will be bound to the shell type, as the ’s in
{a.A}! will be shadowed by the binder in labeled type.

Meanwhile, the label [ is bound to the shell type, indicated by the binder { (e, I).A in the translation
introducing two binders at the same time. The binded label  is used in the labeled type {a.A}
to achieve the same effect of nominal unfolding. But unlike previous work which directly assigns
fresh labels, we introduce labels as binded structures to ensure that two types can be independently
translated and then compared in a subtyping relation.

2.3 Algorithmic Subtyping

The subtyping algorithm can be seen as a simple extension of Huang et al. [2021]’s BCD subtyping
algorithm. The shell types are splittable (distributive over intersection) and have standard subtyping
rule suB-sHELL, without the need of extra unfolding as seen in the nominal unfolding rules. (Note,
in the named representation, the body of the shell type can be compared directly, while with a
locally nameless view, both « and [ have to be opened to compare the body of the shell type.)

For the labeled types we also have the standard subtyping rule suB-LaBEL. However, since labeled
types serve as simulation of double / nominal unfolding, they are not splittable.

(Subtyping for the target types)

SUB-ARR SUB-SHELL

SUB-NAT SUB-TOP SUB-VAR A2 < Al B1 < B2 A<B
nat < nat ALT a<a A > B <A, > B {(a,]).A<{(a,]).B
SUB-LABEL SUB-ANDL SUB-ANDR SUB-AND
A<B A1SB AzSB ASBl ASBZ B1<1BI>B2
{a. A} < {a. B} A & A, <B A & A, <B A<B
(Splitting target types)
SPL-ARR SPL-SHELL
SPL-AND B < B> B, B, < B> By
A< A&Br> B A— B <«A—BrA—B {(a,1).By < (e, 1). B> {(a,]). B,

Fig. 2. Algorithmic subtyping rules.

With the algorithmic subtyping rules defined for translated types, we obtain an algorithm for the
source types by first translating the source types to target types, and then applying the algorithmic
subtyping rules to the translated types. (Note, in this document we typically use <: for subtyping
relations on the source types and < for the target types.)

A<}y B£VA'B,if A~ A" AB~> B thenA’ < B

2.4 Declarative Subtyping

We wish to argue the correctness of the algorithmic subtyping by proving its soundness and
completeness to declarative subtyping rules. The declarative rules in Figure 3 are basically the
original BCD rules extended with

(1) The nominal unfolding rule for subtyping iso-recursive types. (rule SUB-MU)

(2) A (hypothetical) distributive rule for merging two recursive types. (rule SUB-DIST-MU)
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99 (3) The toplike rule for recursive types. (rule SUB-TOP-MU)

100 Note that the declarative rule includes a built-in transitivity rule SUB-TrRANS, which makes the
101 rules non-algorithmic.

102

(Sub)

104

SUB-TRANS SUB-ARR SUB-LABEL
105 SUB-REFL A<:B B<:C  SUBTOP Ay <A, By < B A<:B
106
107 A< A A<:C A< T Ay — B <t Ay — By A% <: B*
108 SuB-MU SUB-AND
109 Ala — A%] <: Bla — BY] SUB-ANDL SUB-ANDR A<: B A<: By
110
11 ﬂ(l.A<Zﬂ0[.B Al&Az <ZA1 Al&Az <ZA2 A<2B1&Bz
e SUB-DIST-ARR SUB-DIST-MU SUB-TOP-MU
113
114 (A—> B))&(A— By) <:A— (B &B)) (pa. A) & (ua. B) <: pya. (A& B) T<:pa.T
115
116 SUB-TOP-ARR
117 I E—

T<:T—>T

118
119
120 Fig. 3. Declarative subtyping rules.

121

122 Theorem 1 (Completeness of translation subtyping). If A’ ~» A, B’ ~» Band A’ <: B/, then A < B
123

124 The completeness theorem is relatively easy to prove. Since the translated subtyping system is
195 well-studied, < is transitive, so we solve the SUB-TRANS case.

126 For case SuB-D1sT-MU, thanks to polarized subtyping, we can show that

127 pa A’ & pa.B’

128 w L ]).(Ala” — {a.AY]) & {(a,]).(Bla™ + {a.B}!])
129 {(aD).(Ala™ = {a.A&BY]) & {(a,1).(B[a~ > {a.A&B}!]) (A&B < A in polarized subst.)
{(a,1).((A&B) [~ + {a.A&B}!]) ¢~ pa.(A’ & B')

For case Sus-mu, we should be able to show that polarized subtyping is sufficient w.r.t. nominal
unfolding, with the help of Lemma 2.

I IA

130
131
132
133
134 Lemma 2 (Polarized substitution to full substitution). If A[a~ — {a.C}}] < Bla™ — {a.D}],
135 and C < D, then A[a — {a.C}!] < Bla — {a.D}].

136

. Theorem 3 (Soundness of translation subtyping). If A’ ~»» A, B" ~» Band A < B, then A’ <: B

138 PROOF ATTEMPT OF SOUNDNESS. We prove the soundness of the translation subtyping by induc-
139 tion on the derivation of A < B and then inversion on the derivation of A’ ~» A and B’ ~» B.
140 Most of the cases are straightforward by applying the induction hypothesis. For example, in the

141 case SUB-ARR, by inversion we know there exists A} and A} such that A7 v A; and A) ~» A,. By
142 induction hypothesis, we have A’, <: A]. Similarly, we can prove B; <: B]. Therefore, by applying
143 the rule SUB-ARR, we have A’ — B’.
144 The challenging case is where there are no inversed types, which is the case for su-anp. In
145 this case, when B’ ~» B and B; < B> B, are given, B; and B, are not necessarily guaranteed to be
146 translated from some type B} and B}, so we cannot apply IH.
147
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It is also hard to recover some source type from the splitted target type B, B}, in particular in
the case of nested recursive types.
m]

3 Intermediate System

We adapt the Siek [2020]’s BCD subtyping system, which keeps the right type invertible throughout
the subtyping derivation.
We hope to prove soundness with the help of this intermediate system.

Declarative Wcomphtenes“heorem( Translation
Specification J L Subtyping

soundness theorem soundness

Intermediate
System

Fig. 4. Structure of the proof

3.1 Containment Relation

(B contains A)

CONT-ANDL CONT-ANDR CONT-ARR
CONT-NAT AGB AcC CONT-VAR Ba C
nat @ nat A@B&C A@B&C aGa A—->BcA—->C
CONT-MU-NEG CONT-MU-POS
CONT-LABEL a € FV(4) a¢ FV (A AGB
A% @ A* pa A @ pa. A pa. A @ pa.B

The containment relation treat binary intersections as a sequence. The subsequence relation can be
described as A @ B, defined as follows:

AEB=VC.C @ AimpliesC @ B

There are a few properties of the containment relation (which have passed the property based test-
ing). Note: in the testing, we used the translation algorithm <:, instead of <:;, to avoid exponential
blowup of iterating all combinations.

Theorem 4 (Each containment is a supertype). For any two types A and B, if A @ B, then B <:, A.
Corollary 5. If A @ B, then B <:; A.
Theorem 6 (All containments recover the original type). (&a,ep5A;) < B

Theorem 7 (Containments can always form an intermediate type). For any two types A and B, if
A <:, B, then there exists a type C & A such that C <:; B.
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Distributive Iso-Recursive Subtyping 5

A side note on the negative variable testing. Note, we rely on a @ € FV™(A) relation to determine
whether a variable appears negatively in a type. In this checking we need to take nested recursive
types into account. For example, @ € FV™ (pf.f — «) is true. In the current implementation, this is
achieved by checking the negative occurrences of « in the translation of A:

a € FV (A) £ If A~ B, then a € FV™(B)

but I believe we can define an alternative inductive relation to define « € FV™(A) without relying
on the translation.
Another point to note is that we might consider this alternative treatment of FV™ (A):

If1A[, then a € FV™ (A) always holds regardless of whether « appears in A.

Since we can always rewrite this toplike type A to T which contains no a. However, this optimization
is not implemented in the current version, and (I presume) might be unnecessary to include in the
proof.

3.2 Auxiliary Functions

dom(A) and cod(A) are the intersections of all domains and codomains in a function-like type.

dom(A—B) = A

dom(A&B) = dom(A)&dom(B)
codlA—>B) = B

cod(A&B) = cod(A)&cod(B)

They are the same as Siek [2020]’s definitions. In simple BCD settings, A is equivalent to
dom(A) — cod(A).
Similarly, we define mcod(A), which extracts all the codomains of recursive types in A:

mcod(ua.A) = (A)
mcod(A&B) = mcod(A)&mcod(B)

However, ua.mcod(A) is not equivalent to A, due to negative recursive subtyping. This is also
the reason why in the containment relation, we had the overlapping rules coNT-MU-NEG and
CONT-MU-POSs. For example:

mu a. Int -> a is a containment of mu a. (Int -=> a) & (a -> Int)
mu a. (Int -=>a) & (a -=> Int) is also a containment of mu a. (Int ->a) & (a —> Int)

This is to ensure that all the possible minimal components in a recursive type are captured
(Theorem 7).

3.3 Subtyping Relation
We first present Siek [2020]’s BCD subtyping rules (without recursive types).
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6 Anon.

A< B (Intermediate subtyping system)
JSUB-TOP JSUB-ANDL JSUB-ANDR JSUB-AND
JSUB-NAT 1B[ A; < B Ay <:s B A< B; A< By
nat <: nat A<ZSB A& Ay < B A& Ay < B A<ZSB1&BZ
JSUB-ARR
C <:sdom(B) cod(B) <:;s D Ba A =1D[ JSUB-VAR
A<, C—>D a<iga

Fig. 5. Siek [2020]’s BCD subtyping rules without recursive types.

Rule jsUB-ARR is the only non-trivial rule in this system. It deals with function distributive
subtyping not by splitting C — D, but by finding a part of A, namely B (which can be regarded as
the intersection of several A;’s such that A; @ A). And then extract the domain and codomain of B
to compare with C and D.

The key characteristic of this rule is that it keeps all the types in the premises invertible (given
that the type in the conclusion is invertible), while it still provides a way to destruct the subtyping
of function types (by iterating over all components of A).

3.4 Adding Recursive Types to Subtyping Relation - first attempt

We wish to develop a similar subtyping rule for recursive types. The idea is similar - for A <: pa.B,
we find components of A, whose recursive bodies can be merged to form a subtype of pa.B, so that
we can apply the nominal unfolding rule to destruct the recursive types:
CEA mcod(C)[a — mod(C)%] <:s Bla +— B%]
A <5 pa.B

JSUB-MU-ATTEMPT

With the rule above we should be able to deal with subtyping relations like:
mu a. (Int -=> a) & mu a. (Bool -> a) & mu a. ((a -> Int) & (a -> Bool) )

<: mu a. ((Bool -> a) & (a -> Int) & (a -> Bool))
by settingC = mu a. (Bool -> a) & mu a. ((a -> Int) & (a -> Bool)). Note that without
the C @ A condition, we would have to merge all the components of the recursive types in A,
which leads to failure in comparing the nominal unfolding due to negative occurrences of a.

It is also helpful at this point to see some examples that our new defined rule conT-MU-POs and
rule CONT-MU-NEG are able to handle. Consider:

mu a. ((Int -=> a) & (Bool -> a)) & mu a. ((a -> Int) & (a -> Bool) )

<: mu a. ((Bool -> a) & (a -> Int) & (a -> Bool))
The rule conT-mU-POs allows us to get two containments mu a. Int -> aandmu a. Bool -> a
frommu a. ((Int -> a) & (Bool -> a)), so that the intended C can be formed. By contrast,
due to the negative occurrences of « in the second recursive type, the only type it contains is itself
(by rule coNT-MU-NEG). Otherwise we get non-equivalent types.

3.5 Adding Recursive Types to Subtyping Relation - refined

However, due to the non-invariant nature of distributing recursive types, rule JSUB-MU-ATTEMPT is
not sufficient to handle all the cases. For example, in

(mu a. Top -> a) & (mu a. a > Int) <: mu a. ((Int -> a) & (a -> Int))
The subtyping holds in the declarative specification with the help of a middle type:
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Distributive Iso-Recursive Subtyping 7

(mu a. Int -> a) & (mu a. a -> Int)

However, with the proposed rule jsuB-MU-ATTEMPT, we cannot find a type C for the original type
that satisfies the nominal unfolding. The derivation for this example has to be first subtyping on
the first left component, and then merge.

To address this issue, we propose to also split on the right, but in a different way than the
containment relation does on the left type. The idea is to find splits of ya.B such that checking
whether A is a subtype of all the types in the split is sufficient to prove A <: ua.B.

The procedure of finding such splits is described as follows:

(1) Find all the precise containments D; @’ B.
Note that here we use a different notion of containment than the one used on the left type.
Specifically,
@'£@& /CONT-MU-POS U CONT-MU-POS-STRICT

. The replaced rule cONT-MU-POS-STRICT is as follows:
CONT-MU-POS-STRICT

a ¢ FV™(B) AGB
pa. A @ po. B

Unlike the original rule conT-mU-POs, which allows one to consider a positive part of A to
be the containment of B even if B is negative, e.g.:

mu a. Int -> a is a containment of mu a. (Int -> a) & (a -> Int)
Here since we are splitting on the right, we want the containment to be precise, we simply
wantmu a. (Int -> a) & (a -> Int) to be a precise containment of itself.

(2) We sort out all the positive containments Df * and negative containments D?eg from the
list of precise containments, based on whether @« € FV™(D;) or not. Then the positive
containments Df % are collected as a list ;wc.Df % while the negative containments are
merged into a single type pa.(&y; D;.wg).

We write a + Cy,...,C, & A < B to denote that recursive type pa.A is merged from a
negative pa.B and several positive pa.C;’s.
Figure 6 shows an example of this splitting.

Original type: Splits into:
mu a. Positive parts:
(Int -> a) mu a. Int -> a
& (a -> Int) mu a. mu b. Int -> a
& (mu b. mu a. mu b. Int -> b
(Int -> a) mu a. mu b. ((Bool -> b) & (b -> Int))
& (Int -> b))
& (mu b. Negative part:
(Bool -> b) mu a. (
& (b -> Int)) (a => Int)
& (mu b.
(Bool -> b)
& (b -> Int))
)

Fig. 6. Example of right splitting

, Vol. 1, No. 1, Article . Publication date: April 2025.



344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
384
385
386
387
388
389
390
391
392

Anon.

(3) Rule jsus-mu is the final rule for subtyping on recursive types. It applys the original

containment relation on the left type, and the new precise containment finding procedure
we proposed above on the right type.

Then, it divides the positive parts into two groups, one Dy, ..., D, that are compared directly
with the nominal unfolding of mod(C), and the other D7, ..., D,’( that are merged into the
negative part and compared as a whole with the nominal unfolding of mod(C).

(Intermediate subtyping system)

JSUB-MU

C&A avrDy.,D,D,, ..,D,=>B<LS  —lua B

mcod(C)[a + mcod(C)*] <:s Di[a +— D;*] .. mcod(C)[a + mcod(C)¥] <:s Dy[a +— D,*]

mcod(C) [a = mcod(C)*] <:s (D& .. &D;) & S)[a = ((D1& .. &D;) & S)“]

A< pa.B

Fig. 7. Siek [2020]’s BCD subtyping rules extended with recursive types.

Here are some remarks on the rule jsuB-mu rule:
e Despite backtracking on a lot of combinations of the containments on both sides, the rule

still ensures that the depth of recursive types is decreasing (maybe no, since we use nominal
unfolding, but we should have ways to adopt some techniques before to deal with that)
in the derivation. So we should have a well-founded induction principle / size function to
reason about this rule.

It should be straightforward to see the soundness of this intermediate system to the declar-
ative specification. We can turn all the containments into subtyping relations (both in
rules jsuB-MU and JSUB-ARR), and then apply the transitivity rule.

The soundness of the translation algorithm to this intermediate system might be more
non-trivial. But the advantage of this intermediate system is that rule jsuB-mu only deals
with one level of recursive types, and it delegates the subtyping of inner recursive binders to
the nominal unfolding rule. So compared to the translation algorithm, whose split operation
can be arbitrarily deep, across several recursive binders, the reasoning on nested recursion
for this rule is expected to be simpler.
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