
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Distributive Iso-Recursive Subtyping

ANONYMOUS AUTHOR(S)

1 Introduction
2 Overview
2.1 Syntax

Source Types 𝐴, 𝐵 F nat | ⊤ | 𝐴1 → 𝐴2 | 𝛼 | 𝐴1&𝐴2 | 𝜇𝛼. 𝐴 | 𝐴𝛼

Target Types 𝐴, 𝐵 F nat | ⊤ | 𝐴1 → 𝐴2 | 𝛼 | 𝐴1&𝐴2 | 𝜁 (𝛼, 𝑙). 𝐴 | {𝛼. 𝐴}𝑙

We will abuse the meta-variable 𝐴, 𝐵, 𝐶 , 𝐷 , . . . to denote both source and target types. We will

indicate in the rule whether the type in question is a source type or a target type.

Note, though written as named representation, we allow the use of alpha renaming at will in all

the rules. Specifically, if we take a locally nameless view, then for following type constructs:

• In source type, variables are bound to recursive types. In 𝜇𝛼.𝐴, the variable 𝛼 is bound to

the type 𝐴.

• In target type, variables are bound to both recursive shell types and labeled types. In 𝜁 (𝛼, 𝑙).𝐴
and {𝛼.𝐴}𝑙 , the variable 𝛼 is bound to the type 𝐴.

For example, in the type 𝜁 (𝛼, 𝑙).𝛼 → {𝛼.(nat → 𝛼)}𝑙 , the first 𝛼 is bound to the recursive

shell type and the 𝛼 in (nat → 𝛼) is bound to the labeled type.

• In target type, labels can also be renamed up to 𝛼-equivalence w.r.t. the recursive shell type,

i.e., in 𝜁 (𝛼, 𝑙).𝐴, the label 𝑙 is bound to the type 𝐴.

2.2 Translation

𝐴 ⇝ 𝐵 (Source type 𝐴 translates to target type 𝐵)

trans-top

⊤ ⇝ ⊤

trans-nat

nat ⇝ nat

trans-var

𝛼 ⇝ 𝛼

trans-and

A′ ⇝ A B′ ⇝ B

A′
&B′ ⇝ A&B

trans-arr

A′ ⇝ A B′ ⇝ B

A′ → B′ ⇝ A → B

trans-mu

A′ ⇝ A

𝜇𝛼.A′ ⇝ 𝜁 (𝛼, 𝑙). (A[𝛼− ↦→ {𝛼. A}𝑙])

trans-label

A′ ⇝ A

A′𝛼 ⇝ {_. A}𝛼

Fig. 1. Translation rules.

In rule trans-mu, we perform a bottom-up translation, which means the body is first translated

to a target type 𝐴, and then the translation result is a polarized substitution of the variable 𝛼 in the

type 𝐴.

The substitution type, {𝛼.𝐴}𝑙 , is a labeled type, and 𝛼 is bound in the type𝐴, so if 𝜇𝛼.𝐴′
is closed,

then {𝛼.𝐴}𝑙 is also closed.

The substitution result is a shell type, the 𝜁 (looking like a shell) is used to indicate the range of

the original recursive type in the translation. The variable 𝛼 is bound to the type 𝐴[𝛼− ↦→ {𝛼.𝐴}𝑙].
2025. ACM XXXX-XXXX/2025/4-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

More precisely, only the free variable 𝛼 in the first 𝐴 will be bound to the shell type, as the 𝛼 ’s in

{𝛼.𝐴}𝑙 will be shadowed by the binder in labeled type.

Meanwhile, the label 𝑙 is bound to the shell type, indicated by the binder 𝜁 (𝛼, 𝑙).𝐴 in the translation

introducing two binders at the same time. The binded label 𝑙 is used in the labeled type {𝛼.𝐴}𝑙
to achieve the same effect of nominal unfolding. But unlike previous work which directly assigns

fresh labels, we introduce labels as binded structures to ensure that two types can be independently
translated and then compared in a subtyping relation.

2.3 Algorithmic Subtyping
The subtyping algorithm can be seen as a simple extension of Huang et al. [2021]’s BCD subtyping

algorithm. The shell types are splittable (distributive over intersection) and have standard subtyping

rule sub-shell, without the need of extra unfolding as seen in the nominal unfolding rules. (Note,

in the named representation, the body of the shell type can be compared directly, while with a

locally nameless view, both 𝛼 and 𝑙 have to be opened to compare the body of the shell type.)

For the labeled types we also have the standard subtyping rule sub-label. However, since labeled

types serve as simulation of double / nominal unfolding, they are not splittable.

𝐴 ≤ 𝐵 (Subtyping for the target types)

sub-nat

nat ≤ nat

sub-top

A ≤ ⊤

sub-var

𝛼 ≤ 𝛼

sub-arr

A2 ≤ A1 B1 ≤ B2
A1 → B1 ≤ A2 → B2

sub-shell

A ≤ B

𝜁 (𝛼, 𝑙).A ≤ 𝜁 (𝛼, 𝑙). B

sub-label

A ≤ B

{𝛼. A}𝑙 ≤ {𝛼. B}𝑙

sub-andl

A1 ≤ B

A1 &A2 ≤ B

sub-andr

A2 ≤ B

A1 &A2 ≤ B

sub-and

A ≤ B1 A ≤ B2 B1 ◁ B ▷ B2
A ≤ B

𝐵1 ◁ 𝐵 ▷ 𝐵2 (Splitting target types)

spl-and

A ◁ A&B ▷ B

spl-arr

B1 ◁ B ▷ B2
A → B1 ◁ A → B ▷ A → B2

spl-shell

B1 ◁ B ▷ B2
𝜁 (𝛼, 𝑙). B1 ◁ 𝜁 (𝛼, 𝑙). B ▷ 𝜁 (𝛼, 𝑙). B2

Fig. 2. Algorithmic subtyping rules.

With the algorithmic subtyping rules defined for translated types, we obtain an algorithm for the

source types by first translating the source types to target types, and then applying the algorithmic

subtyping rules to the translated types. (Note, in this document we typically use <: for subtyping

relations on the source types and ≤ for the target types.)

𝐴 <:𝑎 𝐵 ≜ ∀𝐴′ 𝐵′, if 𝐴 ⇝ 𝐴′ ∧ 𝐵 ⇝ 𝐵′
then 𝐴′ ≤ 𝐵′

2.4 Declarative Subtyping
We wish to argue the correctness of the algorithmic subtyping by proving its soundness and

completeness to declarative subtyping rules. The declarative rules in Figure 3 are basically the

original BCD rules extended with

(1) The nominal unfolding rule for subtyping iso-recursive types. (rule Sub-mu)

(2) A (hypothetical) distributive rule for merging two recursive types. (rule Sub-dist-mu)

, Vol. 1, No. 1, Article . Publication date: April 2025.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Distributive Iso-Recursive Subtyping 3

(3) The toplike rule for recursive types. (rule Sub-top-mu)

Note that the declarative rule includes a built-in transitivity rule Sub-trans, which makes the

rules non-algorithmic.

𝐴 <: 𝐵 (Sub)

Sub-refl

A <: A

Sub-trans

A <: B B <: C

A <: C

Sub-top

A <: ⊤

Sub-arr

A2 <: A1 B1 <: B2
A1 → B1 <: A2 → B2

Sub-label

A <: B

A𝛼 <: B𝛼

Sub-mu

A[𝛼 ↦→ A𝛼] <: B[𝛼 ↦→ B𝛼]
𝜇𝛼.A <: 𝜇𝛼. B

Sub-andl

A1 &A2 <: A1

Sub-andr

A1 &A2 <: A2

Sub-and

A <: B1 A <: B2
A <: B1 &B2

Sub-dist-arr

(A → B1) & (A → B2) <: A → (B1 &B2)

Sub-dist-mu

(𝜇𝛼.A) & (𝜇𝛼. B) <: 𝜇𝛼. (A&B)

Sub-top-mu

⊤ <: 𝜇𝛼.⊤

Sub-top-arr

⊤ <: ⊤ → ⊤

Fig. 3. Declarative subtyping rules.

Theorem 1 (Completeness of translation subtyping). If 𝐴′ ⇝ 𝐴, 𝐵′ ⇝ 𝐵 and 𝐴′ <: 𝐵′
, then 𝐴 ≤ 𝐵

The completeness theorem is relatively easy to prove. Since the translated subtyping system is

well-studied, ≤ is transitive, so we solve the Sub-trans case.

For case Sub-dist-mu, thanks to polarized subtyping, we can show that

𝜇𝛼.𝐴′
& 𝜇𝛼.𝐵′

⇝ 𝜁 (𝛼, 𝑙).(𝐴[𝛼− ↦→ {𝛼.𝐴}𝑙]) & 𝜁 (𝛼, 𝑙).(𝐵 [𝛼− ↦→ {𝛼.𝐵}𝑙])
≤ 𝜁 (𝛼, 𝑙).(𝐴[𝛼− ↦→ {𝛼.𝐴&𝐵}𝑙]) & 𝜁 (𝛼, 𝑙).(𝐵 [𝛼− ↦→ {𝛼.𝐴&𝐵}𝑙]) (𝐴&𝐵 ≤ 𝐴 in polarized subst.)
= 𝜁 (𝛼, 𝑙).((𝐴&𝐵) [𝛼− ↦→ {𝛼.𝐴&𝐵}𝑙]) f 𝜇𝛼.(𝐴′

&𝐵′)
For case Sub-mu, we should be able to show that polarized subtyping is sufficient w.r.t. nominal

unfolding, with the help of Lemma 2.

Lemma 2 (Polarized substitution to full substitution). If 𝐴[𝛼− ↦→ {𝛼.𝐶}𝑙] ≤ 𝐵 [𝛼− ↦→ {𝛼.𝐷}𝑙],
and 𝐶 ≤ 𝐷 , then 𝐴[𝛼 ↦→ {𝛼.𝐶}𝑙] ≤ 𝐵 [𝛼 ↦→ {𝛼.𝐷}𝑙].

Theorem 3 (Soundness of translation subtyping). If 𝐴′ ⇝ 𝐴, 𝐵′ ⇝ 𝐵 and 𝐴 ≤ 𝐵, then 𝐴′ <: 𝐵′

Proof attempt of Soundness. We prove the soundness of the translation subtyping by induc-

tion on the derivation of 𝐴 ≤ 𝐵 and then inversion on the derivation of 𝐴′ ⇝ 𝐴 and 𝐵′ ⇝ 𝐵.

Most of the cases are straightforward by applying the induction hypothesis. For example, in the

case sub-arr, by inversion we know there exists 𝐴′
1
and 𝐴′

2
such that 𝐴′

1
⇝ 𝐴1 and 𝐴

′
2
⇝ 𝐴2. By

induction hypothesis, we have 𝐴′
2
<: 𝐴′

1
. Similarly, we can prove 𝐵′

2
<: 𝐵′

1
. Therefore, by applying

the rule Sub-arr, we have 𝐴′ → 𝐵′
.

The challenging case is where there are no inversed types, which is the case for sub-and. In

this case, when 𝐵′ ⇝ 𝐵 and 𝐵1 ◁ 𝐵 ▷ 𝐵2 are given, 𝐵1 and 𝐵2 are not necessarily guaranteed to be

translated from some type 𝐵′
1
and 𝐵′

2
, so we cannot apply IH.

, Vol. 1, No. 1, Article . Publication date: April 2025.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

It is also hard to recover some source type from the splitted target type 𝐵′
1
, 𝐵′

2
, in particular in

the case of nested recursive types.

□

3 Intermediate System
We adapt the Siek [2020]’s BCD subtyping system, which keeps the right type invertible throughout

the subtyping derivation.

We hope to prove soundness with the help of this intermediate system.

Declarative
Specification

Translation
Subtyping

completeness theorem

Intermediate
System

soundnesssoundness theorem

Fig. 4. Structure of the proof

3.1 Containment Relation

𝐴 D 𝐵 (𝐵 contains 𝐴)

cont-nat

nat D nat

cont-andl

A D B

A D B&C

cont-andr

A D C

A D B&C

cont-var

𝛼 D 𝛼

cont-arr

B D C

A → B D A → C

cont-label

A𝛼 D A𝛼

cont-mu-neg

𝛼 ∈ FV− (A)
𝜇𝛼.A D 𝜇𝛼.A

cont-mu-pos

𝛼 ∉ FV− (A) A D B

𝜇𝛼.A D 𝜇𝛼. B

The containment relation treat binary intersections as a sequence. The subsequence relation can be

described as 𝐴 F 𝐵, defined as follows:

𝐴 F 𝐵 ≜ ∀𝐶.𝐶 D 𝐴 implies 𝐶 D 𝐵

There are a few properties of the containment relation (which have passed the property based test-

ing). Note: in the testing, we used the translation algorithm <:𝑎 instead of <:𝑗 , to avoid exponential

blowup of iterating all combinations.

Theorem 4 (Each containment is a supertype). For any two types 𝐴 and 𝐵, if 𝐴 D 𝐵, then 𝐵 <:𝑎 𝐴.

Corollary 5. If 𝐴 F 𝐵, then 𝐵 <:𝑎 𝐴.

Theorem 6 (All containments recover the original type). (&𝐴𝑖D𝐵 𝐴𝑖) <:𝑎 𝐵

Theorem 7 (Containments can always form an intermediate type). For any two types 𝐴 and 𝐵, if

𝐴 <:𝑎 𝐵, then there exists a type 𝐶 F 𝐴 such that 𝐶 <:𝑎 𝐵.

, Vol. 1, No. 1, Article . Publication date: April 2025.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Distributive Iso-Recursive Subtyping 5

A side note on the negative variable testing. Note, we rely on a 𝛼 ∈ FV− (𝐴) relation to determine

whether a variable appears negatively in a type. In this checking we need to take nested recursive

types into account. For example, 𝛼 ∈ FV− (𝜇𝛽.𝛽 → 𝛼) is true. In the current implementation, this is

achieved by checking the negative occurrences of 𝛼 in the translation of 𝐴:

𝛼 ∈ FV− (𝐴) ≜ If 𝐴 ⇝ 𝐵, then 𝛼 ∈ FV− (𝐵)

but I believe we can define an alternative inductive relation to define 𝛼 ∈ FV− (𝐴) without relying
on the translation.

Another point to note is that we might consider this alternative treatment of FV− (𝐴):

If⌉𝐴⌈, then 𝛼 ∈ FV− (𝐴) always holds regardless of whether 𝛼 appears in 𝐴.

Since we can always rewrite this toplike type𝐴 to⊤which contains no𝛼 . However, this optimization

is not implemented in the current version, and (I presume) might be unnecessary to include in the

proof.

3.2 Auxiliary Functions
dom(𝐴) and cod(𝐴) are the intersections of all domains and codomains in a function-like type.

dom(𝐴 → 𝐵) = 𝐴

dom(𝐴&𝐵) = dom(𝐴)&dom(𝐵)

cod(𝐴 → 𝐵) = 𝐵

cod(𝐴&𝐵) = cod(𝐴)&cod(𝐵)

They are the same as Siek [2020]’s definitions. In simple BCD settings, 𝐴 is equivalent to

dom(𝐴) → cod(𝐴).
Similarly, we define mcod(𝐴), which extracts all the codomains of recursive types in 𝐴:

mcod(𝜇𝛼.𝐴) = (𝐴)
mcod(𝐴&𝐵) = mcod(𝐴)&mcod(𝐵)

However, 𝜇𝛼.mcod(𝐴) is not equivalent to 𝐴, due to negative recursive subtyping. This is also

the reason why in the containment relation, we had the overlapping rules cont-mu-neg and

cont-mu-pos. For example:

mu a. Int -> a is a containment of mu a. (Int -> a) & (a -> Int)
mu a. (Int -> a) & (a -> Int) is also a containment of mu a. (Int -> a) & (a -> Int)

This is to ensure that all the possible minimal components in a recursive type are captured

(Theorem 7).

3.3 Subtyping Relation
We first present Siek [2020]’s BCD subtyping rules (without recursive types).

, Vol. 1, No. 1, Article . Publication date: April 2025.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

𝐴 <:𝑠 𝐵 (Intermediate subtyping system)

jsub-nat

nat<:𝑠 nat

jsub-top

⌉B⌈
A<:𝑠 B

jsub-andl

A1 <:𝑠 B

A1 &A2 <:𝑠 B

jsub-andr

A2 <:𝑠 B

A1 &A2 <:𝑠 B

jsub-and

A<:𝑠 B1 A<:𝑠 B2
A<:𝑠 B1 &B2

jsub-arr

C <:𝑠 dom(B) cod(B) <:𝑠 D B D A ¬⌉D⌈
A<:𝑠 C → D

jsub-var

𝛼 <:𝑠 𝛼

Fig. 5. Siek [2020]’s BCD subtyping rules without recursive types.

Rule jsub-arr is the only non-trivial rule in this system. It deals with function distributive

subtyping not by splitting 𝐶 → 𝐷 , but by finding a part of 𝐴, namely 𝐵 (which can be regarded as

the intersection of several 𝐴𝑖 ’s such that 𝐴𝑖 D 𝐴). And then extract the domain and codomain of 𝐵

to compare with 𝐶 and 𝐷 .

The key characteristic of this rule is that it keeps all the types in the premises invertible (given

that the type in the conclusion is invertible), while it still provides a way to destruct the subtyping

of function types (by iterating over all components of 𝐴).

3.4 Adding Recursive Types to Subtyping Relation - first attempt
We wish to develop a similar subtyping rule for recursive types. The idea is similar – for 𝐴 <: 𝜇𝛼.𝐵,

we find components of 𝐴, whose recursive bodies can be merged to form a subtype of 𝜇𝛼.𝐵, so that

we can apply the nominal unfolding rule to destruct the recursive types:

𝐶 F 𝐴 mcod(𝐶) [𝛼 ↦→ mod(𝐶)𝛼] <:𝑠 𝐵 [𝛼 ↦→ 𝐵𝛼]
𝐴 <:𝑠 𝜇𝛼.𝐵

jsub-mu-attempt

With the rule above we should be able to deal with subtyping relations like:

mu a. (Int -> a) & mu a. (Bool -> a) & mu a. ((a -> Int) & (a -> Bool))
<: mu a. ((Bool -> a) & (a -> Int) & (a -> Bool))

by setting C = mu a. (Bool -> a) & mu a. ((a -> Int) & (a -> Bool)). Note that without
the 𝐶 F 𝐴 condition, we would have to merge all the components of the recursive types in 𝐴,

which leads to failure in comparing the nominal unfolding due to negative occurrences of 𝛼 .

It is also helpful at this point to see some examples that our new defined rule cont-mu-pos and

rule cont-mu-neg are able to handle. Consider:

mu a. ((Int -> a) & (Bool -> a)) & mu a. ((a -> Int) & (a -> Bool))
<: mu a. ((Bool -> a) & (a -> Int) & (a -> Bool))

The rule cont-mu-pos allows us to get two containments mu a. Int -> a and mu a. Bool -> a
from mu a. ((Int -> a) & (Bool -> a)), so that the intended 𝐶 can be formed. By contrast,

due to the negative occurrences of 𝛼 in the second recursive type, the only type it contains is itself

(by rule cont-mu-neg). Otherwise we get non-equivalent types.

3.5 Adding Recursive Types to Subtyping Relation - refined
However, due to the non-invariant nature of distributing recursive types, rule jsub-mu-attempt is

not sufficient to handle all the cases. For example, in

(mu a. Top -> a) & (mu a. a -> Int) <: mu a. ((Int -> a) & (a -> Int))

The subtyping holds in the declarative specification with the help of a middle type:

, Vol. 1, No. 1, Article . Publication date: April 2025.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Distributive Iso-Recursive Subtyping 7

(mu a. Int -> a) & (mu a. a -> Int)

However, with the proposed rule jsub-mu-attempt, we cannot find a type 𝐶 for the original type

that satisfies the nominal unfolding. The derivation for this example has to be first subtyping on

the first left component, and then merge.

To address this issue, we propose to also split on the right, but in a different way than the

containment relation does on the left type. The idea is to find splits of 𝜇𝛼.𝐵 such that checking

whether 𝐴 is a subtype of all the types in the split is sufficient to prove 𝐴 <: 𝜇𝛼.𝐵.

The procedure of finding such splits is described as follows:

(1) Find all the precise containments 𝐷𝑖 D′ 𝐵.
Note that here we use a different notion of containment than the one used on the left type.

Specifically,

D′≜D /cont-mu-pos ∪ cont-mu-pos-strict

. The replaced rule cont-mu-pos-strict is as follows:

cont-mu-pos-strict

𝛼 ∉ FV− (B) A D B

𝜇𝛼.A D 𝜇𝛼. B

Unlike the original rule cont-mu-pos, which allows one to consider a positive part of 𝐴 to

be the containment of 𝐵 even if 𝐵 is negative, e.g.:

mu a. Int -> a is a containment of mu a. (Int -> a) & (a -> Int)

Here since we are splitting on the right, we want the containment to be precise, we simply

want mu a. (Int -> a) & (a -> Int) to be a precise containment of itself.

(2) We sort out all the positive containments 𝐷
𝑝𝑜𝑠

𝑖
and negative containments 𝐷

𝑛𝑒𝑔

𝑗
from the

list of precise containments, based on whether 𝛼 ∈ FV− (𝐷𝑖) or not. Then the positive

containments 𝐷
𝑝𝑜𝑠

𝑖
are collected as a list 𝜇𝛼.𝐷

𝑝𝑜𝑠

𝑖
, while the negative containments are

merged into a single type 𝜇𝛼.(&∀ 𝑗 𝐷
𝑛𝑒𝑔

𝑗
).

We write 𝛼 ⊢ 𝐶1, . . . ,𝐶𝑛 Q 𝐴 P 𝐵 to denote that recursive type 𝜇𝛼.𝐴 is merged from a

negative 𝜇𝛼.𝐵 and several positive 𝜇𝛼.𝐶𝑖 ’s.

Figure 6 shows an example of this splitting.

Original type:

mu a.
(Int -> a)
& (a -> Int)
& (mu b.

(Int -> a)
& (Int -> b))

& (mu b.
(Bool -> b)

& (b -> Int))

Splits into:

Positive parts:
mu a. Int -> a
mu a. mu b. Int -> a
mu a. mu b. Int -> b
mu a. mu b. ((Bool -> b) & (b -> Int))

Negative part:
mu a.(

(a -> Int)
& (mu b.

(Bool -> b)
& (b -> Int))

)

Fig. 6. Example of right splitting

, Vol. 1, No. 1, Article . Publication date: April 2025.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

(3) Rule jsub-mu is the final rule for subtyping on recursive types. It applys the original

containment relation on the left type, and the new precise containment finding procedure

we proposed above on the right type.

Then, it divides the positive parts into two groups, one𝐷1, . . . , 𝐷𝑛 that are compared directly

with the nominal unfolding of mod(𝐶), and the other 𝐷 ′
1
, . . . , 𝐷 ′

𝑘
that are merged into the

negative part and compared as a whole with the nominal unfolding of mod(𝐶).

𝐴 <:𝑠 𝐵 (Intermediate subtyping system)
jsub-mu

C D A 𝛼 ⊢ D1, .. ,Dn,D′
1
, .. ,D′

k Q B P S ¬⌉𝜇𝛼. B⌈
mcod(C) [𝛼 ↦→ mcod(C)𝛼] <:𝑠 D1 [𝛼 ↦→ D1

𝛼] .. mcod(C) [𝛼 ↦→ mcod(C)𝛼] <:𝑠 Dn [𝛼 ↦→ Dn
𝛼]

mcod(C) [𝛼 ↦→ mcod(C)𝛼] <:𝑠 ((D′
1
& ..&D′

k) & S) [𝛼 ↦→ ((D′
1
& ..&D′

k) & S)𝛼]
A<:𝑠 𝜇𝛼. B

Fig. 7. Siek [2020]’s BCD subtyping rules extended with recursive types.

Here are some remarks on the rule jsub-mu rule:

• Despite backtracking on a lot of combinations of the containments on both sides, the rule

still ensures that the depth of recursive types is decreasing (maybe no, since we use nominal

unfolding, but we should have ways to adopt some techniques before to deal with that)

in the derivation. So we should have a well-founded induction principle / size function to

reason about this rule.

• It should be straightforward to see the soundness of this intermediate system to the declar-

ative specification. We can turn all the containments into subtyping relations (both in

rules jsub-mu and jsub-arr), and then apply the transitivity rule.

• The soundness of the translation algorithm to this intermediate system might be more

non-trivial. But the advantage of this intermediate system is that rule jsub-mu only deals

with one level of recursive types, and it delegates the subtyping of inner recursive binders to

the nominal unfolding rule. So compared to the translation algorithm, whose split operation

can be arbitrarily deep, across several recursive binders, the reasoning on nested recursion

for this rule is expected to be simpler.

, Vol. 1, No. 1, Article . Publication date: April 2025.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Distributive Iso-Recursive Subtyping 9

References
Xuejing Huang, Jinxu Zhao, and Bruno C. D. S. Oliveira. 2021. Taming theMerge Operator. Journal of Functional Programming

31 (Jan. 2021), e28. doi:10.1017/S0956796821000186

Jeremy G. Siek. 2020. Transitivity of Subtyping for Intersection Types. doi:10.48550/arXiv.1906.09709 arXiv:1906.09709 [cs]

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://doi.org/10.1017/S0956796821000186
https://doi.org/10.48550/arXiv.1906.09709
https://arxiv.org/abs/1906.09709

	Abstract
	1 Introduction
	2 Overview
	2.1 Syntax
	2.2 Translation
	2.3 Algorithmic Subtyping
	2.4 Declarative Subtyping

	3 Intermediate System
	3.1 Containment Relation
	3.2 Auxiliary Functions
	3.3 Subtyping Relation
	3.4 Adding Recursive Types to Subtyping Relation - first attempt
	3.5 Adding Recursive Types to Subtyping Relation - refined

	References

